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Abstract

The COVID-19 pandemic is straining public health systems worldwide and major non-
pharmaceutical interventions have been implemented to slow its spread' . During the initial phase
of the outbreak the spread was primarily determined by human mobility . Yet empirical evidence
on the effect of key geographic factors on local epidemic spread is lacking’. We analyse highly-
resolved spatial variables for cities in China together with case count data in order to investigate
the role of climate, urbanization, and variation in interventions across China. Here we show that
the epidemic intensity of COVID-19 is strongly shaped by crowding, such that epidemics in dense
cities are more spread out through time, and denser cities have larger total incidence. Observed
differences in epidemic intensity are well captured by a metapopulation model of COVID-19 that
explicitly accounts for spatial hierarchies. Densely-populated cities worldwide may experience more
prolonged epidemics. Whilst stringent interventions can shorten the time length of these local

epidemics, although these may be difficult to implement in many affected settings.

Predicting the epidemiology of the COVID-19 pandemic is a central priority for guiding epidemic
responses around the world. China has undergone its first epidemic wave and, remarkably, cities across
the country are now reporting few or no locally-acquired cases®. Analyses have indicated that that the
spread of COVID-19 from Hubei to the rest of China was driven primarily by human mobility® and the
stringent measures to restrict human movement and public gatherings within and among cities in China
have been associated with bringing local epidemics under control’. Key uncertainties remain as to which
geographic factors drive local transmission dynamics and affect the intensity of transmission of COVID-
19. For respiratory pathogens, “epidemic intensity” (i.e., the peakedness of the number of cases through
time, or the shortest period during which the majority of cases are observed) varies with increased indoor
crowding, and socio-economic and climatic factors’"*. Epidemic intensity is minimized when incidence
is spread evenly across weeks and increases as incidence becomes more focused in particular days
(Figure 1C, see a detailed description of how epidemic intensity is defined in Ref. ?). In any given
location, higher epidemic intensity requires a larger surge capacity in the public health system'*,
especially for an emerging respiratory pathogen such as COVID-19".

2,16,17

China provides richly detailed epidemiological time series across a wide range of geographic

contexts, hence the epidemic there provides an opportunity to evaluate the role of factors in shaping the

18,19

intensity of local epidemics. We use detailed line-list data from Chinese cities™™ ", climate and population

data, local human mobility data from Baidu, and timelines of outbreaks responses and interventions to
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identify drivers of local transmission in Chinese cities, with a focus on epidemic intensity among

provinces in China.

To explore the impact of urbanization, temperature, and humidity, we used daily incidence data of
confirmed COVID-19 cases (date of onset) aggregated at the prefectural level (n =293) in China.
Prefectures are administrative units that typically have one urban center (Figure 1). We aggregate
individual level data that were collected from official government reports'’. Epidemiological data in each
prefecture were truncated to exclude dates before the first and after the last day of reported cases. The
shape of epidemic curves varied between prefectures with some showing rapid rises and declines in cases
and others showing more prolonged epidemics (Figure 1A). We estimate epidemic intensity for each
prefecture from these data by calculating the inverse Shannon entropy of the distribution of incident
cases’. We define the incidence distribution p; ; for a given city to be the proportion of COVID-19 cases
during epidemic wave j that occurred on day i. The inverse Shannon entropy of incidence for a given
prefecture and year is then given by v; = (— 2ipijlogp; j)'l. Because v; is a function of the disease
incidence curve in each location, rather than of absolute incidence values, it is invariant under differences
in overall reporting rates among cities or overall attack rates. Population counts for each prefecture were
extracted from a 1 km x 1 km gridded surface of the world utilizing administrative-2 level cartographic

boundaries.

Within each prefecture, we calculate Lloyd’s index of mean crowding’?° treating the population count of
each pixel as an individual unit (Methods, Figure 1B and C). The term ‘mean crowding’ used here is a
specific metric that summarizes both, population density and how density is distributed across a
prefecture (patchiness). Values on the resulting index above the mean pixel population count within each
prefecture suggest a spatially-aggregated population structure (Methods). For example, Guangzhou has
high values of crowding whilst Quzhou which has a more evenly distributed population in its prefecture
(Figure 1B and C). Using the centroid of each prefecture we calculate daily mean temperature and
specific humidity; these values are subsequently averaged over each prefecture’s reporting period
(Methods). We performed log-linear regression modeling to determine the association between epidemic

intensity with the socio-economic and environmental variables (Methods).


https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.04.15.20064980.this version posted May 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

A B Guangzhou
—— 10 Least intense prefectures

~— 10 Most intense prefectures

Quzhou
Population
650,000
165,000
40,000
10,000

24 @

238
|

©
—

292
L
~
o
=3
3

236
29.0
L

234

percentaege
of cases
8.8

286
L

284

0 8- 3
N

. r r : : : :
89 time 130 1132 1134 1136 1138 1140 1180 1182 1184 1186 1188 1190 1192

90
91  Figure 1: Maps of crowding in prefectures in China. A) shows epidemic curves that are normalized to
92  show the percentage of cases that are occurring at each given day. The 10 most intense (ved) prefectures
93  are shown versus the 10 least intense (blue). B) An example of a prefecture with high levels of crowding
94  (Guangzhou, Guangdong Province), versus (C) a prefecture where populations are more equally
95  distributed across the prefecture (Quzhou, Zhejiang Province). The colour scale illustrates the number of
96  inhabitants per grid cell (1km x 1km).
97
98  We found that epidemic intensity is significantly negatively correlated with mean population crowding
99  and varies widely across the country (Figure 2, Extended Data Table 1, p-value < 0.001). Our
100  observation contrasts those expected from simple and classical epidemiological models where it would be
101  expected to see more intensity in crowded areas®'**. We hypothesize that the mechanism that underlies
102  the more crowded cities experience less intense outbreaks because crowding enables more widespread
103  and sustained transmission between households leading incidence to be more widely distributed in time
104  (see section below for detailed simulation, Methods). Population size, mean temperature, and mean
105  specific humidity were all significant but their correlation coefficients were much smaller (Extended
106  Data Table 1). A multivariate-model was able to explain a large fraction of the variation in epidemic
107  intensity across Chinese cities (R? = 0.54). We perform sensitivity analysis to account for potential noise
108 in the city level incidence distribution (Extended Data Fig. 1).
109
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111 Figure 2: Crowding and the intensity of transmission of COVID-19 in China. a) negative association
112 between log of epidemic intensity, as measured by inverse Shannon entropy (Methods), and log

113 population crowding, as measure by Lloyd’s mean crowding (Methods). Lower intensity and therefore
114 prolonged epidemics in larger cities. The size of the points indicate the size of the population in each city,
115  b) Map of epidemic intensity in China at the prefecture level. Darker colours indicate lower intensity and
116  lighter colours higher intensity. Grey prefectures had not enough reported cases, no cases or were not
117  included in analyses (Hubei Province).

118

119  One key uncertainty in previous applications of models of epidemic intensity was the contribution of

120  disease importation(s) on the shape of the epidemic’. Due to the unprecedented scale of human mobility
121  restrictions imposed in China, the fact that the early epidemic was effectively from a single source,

122 coupled with the availability of real-time data on mobility, we can evaluate the impact of these

123 restrictions on the epidemic intensity relative to the local dynamics. To do so, we performed a univariate
124  analysis (Extended Data Table 1) and found that human mobility explained 14% of the variation in

125  epidemic intensity. This further supports earlier findings that COVID-19 had already spread throughout
126  much of China prior to the cordon sanitaire of Hubei province and that the pattern of seeding potentially
127  modulates epidemic intensity®?. These findings are in agreement with previous work on other pathogens
128  (measles, influenza) which showed that once local epidemics are established case importation becomes
129  less important in determining epidemic intensity>*.

130
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131  To evaluate the potential impact of variability of intensity on the peak incidence and total incidence we
132 performed a simple linear regression. We found that peak incidence was correlated with epidemic

133 intensity (locations that had high intensity also had more cases at the peak). Total incidence, however,
134  was larger in areas with lower estimated intensity, which is intuitive as crowded areas have longer

135  epidemics that affect more people (Extended Data Table 2). This suggests that measures taken to

136  mitigate the epidemic may need to be enforced more strictly in smaller cities to lower the peak incidence
137  (flatten the curve) but conversely may not need to be implemented as long. Furthermore, with lower total
138 incidence in small cities, the risk of resurgence may be elevated due to lower population immunity. There
139  is urgent need to collect serological evidence to provide a full picture of attack rates across the world®.
140

141  Using our model trained on cities in China we extrapolated epidemic intensity to cities across the world
142 (Figure 3). Figure 3 shows the distribution of epidemic intensity in 380 urban centers. Cities in yellow
143  are predicted to have higher epidemic intensity relative to those in blue (a full list is provided in

144  Extended Data Table 3). Small inland cities in sub-Saharan Africa had high predicted epidemic intensity
145  and may be particularly prone to experience large surge capacity in the public health system®®. In general,
146  coastal cities had lower predicted intensity and larger and more prolonged predicted epidemics. Global
147  predictions of epidemic intensity in cities rely on fitted relationships of the first epidemic curve from

148  Chinese prefectures and therefore need to be interpreted with extreme caution.

149
Epidemic Intensity -
|:] 1.00 .
0.50 = £ "
0.20 J = o N & wf 70 ¥ O: e © Q ° ”
0.05 b © 0 £ 86’ 3 o ™
o 27 @ooo . . S e > M
0.02 } o 2o ol 280 eof ~__ 7 p .
, AL (e, A S 2 )
° . 37 i) o i 8.0 O ‘3\ t’\hho‘ ®°
& | ] Q s ’ .\u\h/‘»" X
AP N o¥Fse R Ay 00
e Silvo:, s LI 6 ‘.‘
%
3. o "8 @O Q OOOOQQ@ OOO%O% .' -%
g 9 o
:o b "’.n 9 e ’u\
& ¢ 9o/, o )
2 . o §o 8y
Py Yo R g
.
e o 80 ?o.. s
) ° ° % e
100 Yt (X J
! ' d
? ° oo & 2~ ° » Y
- 3
180° 120°W 60°W 0° 60°E 120°E 180°
150

151  Figure 3: Predicted epidemic intensities vary across 380 global cities. Darker colours represent low
152  epidemic intensity and lighter colours represent high epidemic intensity. Estimates were generated using

153 the full model (Model 5) fitted to epidemic curves in Chinese cities (Extended Data Table 1). A full list of
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154  epidemic intensities can be found in the Extended Data Table 3. Epidemic intensity is a measure of

155  peakedness of epidemics and does not reflect the expected number of cases (Methods).

156

157  To understand the mechanism responsible for our finding that outbreaks in crowded cities were lower
158 intensity (i.e. more spread out in time), we simulated stochastic epidemic dynamics in different types of
159  populations. Simple, well-mixed transmission models where contact rates are higher in crowded regions
160  were not consistent with our findings, since they predict crowded regions would have more intense and
161  higher-peaked outbreaks. To capture more realistic contact patterns, we created hierarchically-structured
162  populations®” where individuals had high rates of contact within their households (households are defined
163  broadly and could represent care homes, hospitals, prisons, etc.), lower rates with individuals from other
164  houscholds but within the same “neighborhoods”, and relatively rare contact with other individuals in the
165  same prefecture (Figure 4A). Assumptions are consistent with reports that the majority of onward

166  transmission occurred in households**. We assumed spread between prefectures was negligible once an
167  outbreak started. In this scenario, “sparse” prefectures often had more intense, short-term outbreaks that
168  were isolated to certain neighborhoods, while “crowded” prefectures could have drawn-out, low intensity
169  outbreaks that jumped between the more highly-connected “neighborhoods” (Figures 4B and C). These
170  outbreaks had larger final size than those in less-crowded areas (Figure 4C) which likely is related to
171 large overdispersion in the reproduction number of COVID-19%°*° where local outbreaks can reach their
172 full potential due to the availability of contacts. We also considered outbreak dynamics in sparse and

173  crowded prefectures under strong social distancing measures, which is likely to be the scenario occurring
174  across China during most of the time captured by our study and certainly after January 23, 2020°. If social
175  distancing reduces non-household contacts by the same relative amount in all prefectures, there will be
176  more contacts remaining in crowded areas, since baseline contact rates are higher. In this case, it may take
177  much longer for the infection to die out post-intervention in crowded areas (Figure 4D), leading to a

178  lower intensity outbreak with larger final size, as seen in our data (Figure 1C).

179
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181  Figure 4: Mechanisms generating less intense epidemics in crowded populations. A) Schematic of a
182  hierarchically-structured population model consisting of households and “neighborhoods” within a

183  prefecture. Transmission is more likely among contacts connected at lower spatial levels. Crowded

184  populations have stronger connections outside the household, and interventions reduce the strength of
185  these connections in both populations (pink lines). B) - C) Simulated outbreak dynamics in the absence of
186 interventions in crowded vs sparse populations. For the networks in (B), blue nodes are individuals who
187  were eventually infected by the end of the outbreak. In (C), individual realizations are shown with thin
188  blue lines and the average in the thick grey line. D) Simulated outbreak dynamics in the presence of

189  strong social distancing measures in crowded vs. sparse populations. The intervention was implemented
190  atday 15 (pink line) and led to a 75% reduction in contacts.

191

192 Spatial covariates and particularly crowding are important parameters to consider in the assessment of
193  epidemics across the world. Crowded cities tend to be more prolonged due to increased crowding and the
194  higher potential for transmission chains to persist (i.e., in denser environments there is higher potential for
195  two randomly selected hosts in a population to attain spatiotemporal proximity sufficient for COVID-19
196  transmission). Our findings confirm previous work on epidemic intensity of transmission of influenza in
197  cities’ albeit the mechanism for influenza is likely driven by the accumulation of immunity rather than the

198  specific network structure of individuals. More generally, our work provides empirical support for the


https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.04.15.20064980.this version posted May 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

199  role of spatial organization in determining infectious disease dynamics and the limited capacity of cordon

200  sanitaires to control local epidemics?’>!

. We were unable to test more specific hypotheses about which
201  interventions may have impacted the intensity of transmission within and between cities. Further, even
202  though humidity was negatively associated with epidemic intensity it did not explain the majority of the
203  variation and more work will be needed to find causal evidence for the effect of humidity on transmission
204  dynamics of COVID-19. Therefore, maps showing epidemic intensity in cities outside China (Figure 3)
205  should be interpreted with particular caution.

206

207  Currently, non-pharmaceutical interventions are the primary control strategy for COVID-19. As a result,
208  public health measures are often focused on ‘flattening the curve’ to lower the risk of essential services
209  running out of capacity. We show that spatial context, especially crowding, can result in a higher risk of
210  intensive epidemics in less crowded, comparatively rural areas. Therefore, it will be critical to view non-
211  pharmaceutical interventions through the perspective of crowding (i.e., how does an intervention reduce
212 the circle of contacts of an average individual) in cities across the world. Specifically, cities in sub-

213 Saharan Africa have high predicted epidemic intensities that will likely overwhelm already stressed health
214 care systems.

215
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292 Methods
293 Epidemiological data

294  No officially reported line list was available for cases in China. We use a standardised protocol** to

295  extract individual level data from December 1st, 2019 - March 30™, 2020. Sources are mainly official
296  reports from provincial, municipal or national health governments. Data included basic demographics
297  (age, sex), travel histories and key dates (dates of onset of symptoms, hospitalization, and confirmation).
298  Data were entered by a team of data curators on a rolling basis and technical validation and geo-

299  positioning protocols were applied continuously to ensure validity. A detailed description of the

300 methodology is available'’. Lastly, total numbers were matched with officially reported data from China

301  and other government reports.
302

303 Estimating epidemic intensity

304  Epidemic intensity was estimated for each prefecture by calculating the inverse Shannon entropy of the
305  distribution of COVID-19 cases. Shannon entropy was used to fit time series of other respiratory

306 infections (influenza)’. The Shannon entropy of incidence for a given prefecture and year is then given by
307 v = (— 2ipijlogp; j)'l. Because v; is a function of incidence distribution in each location rather than
308 raw incidence it is invariant under differences in overall reporting rates between cities or attack rates. We
309  then assessed how mean intensity v « ¥, ; v; varied across geographic areas in China.

310

311  Proxies for COVID-19 interventions

312  Real-time measures of human mobility were extracted from the Baidu Qianxi web platform to estimate
313  the proportion of daily movement between the city of Wuhan to Hubei and 30 other Chinese provinces.
314  Relative mobility volume was available from January 2, 2020 to January 25, 2020 and averaged across
315  these dates to create a single measure of relative flows from Wuhan. This data was only available at the
316  province level, so each individual prefecture inherited the relative mobility of its higher-level province.
317  Baidu’s mapping service is estimated to have a 30% market share in China and more data can be found>*.
318

319  Data on drivers of transmission of COVID-19

320  Prefecture-specific population counts and densities were derived from the 2020 Gridded Population of
321  The World, a modeled continuous surface of population estimated from national census data and the
322  United Nations World Population Prospectus®. Population counts are defined at a 30 arc-second

323  resolution (approximately 1 km x 1 km at the equator) and extracted within administrative-2 level

324  cartographic boundaries defined by the National Bureau of Statistics of China. Lloyd’s mean crowding,

12


https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.04.15.20064980.this version posted May 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

[Zi(qi-1Daqil
2iqi

326  pixel within a prefecture’s boundary and the resulting value estimates an individual’s mean number of

325 , was estimated for each prefecture where g; represents the population count of each non-zero

327  expected neighbors™**.

328

329  Daily temperature (°F), relative humidity (%) and atmospheric pressure (Pa) at the centroid of each

330  prefecture was provided by The Dark Sky Company via the Dark Sky API and aggregated across a

331  variety of data sources. Specific humidity (kg/kg) was then calculated using the R package, humidity'%.
332  Meteorological variables for each prefecture were then averaged across the entirety of the study period.
333

334 Statistical analysis

335  We normalized the values of epidemic intensity between 0 and 1, and for all non-zero values fit a

336  Generalized Linear Model (GLM) of the form:

337

338 log (Y;) ~ Bo + Bilog (Gj) + B2q; + Bslog (Py) + Bsfj + PaR;

339

340  where for each prefecture j, Y is the scaled Shannon-diversity measure of epidemic intensity derived from
341  the COVID-19 time series, C is Lloyd’s Index of Mean Crowding®™’, q is the mean specific humidity
342 over the reporting period in kg/kg, P is the estimated population count and f is the relative population
343  flows from Wuhan to each prefecture’s higher level province. To account for the length of the epidemic
344  period in each city we calculate R as the number of reporting days.

345

346 Projecting epidemic intensity in cities around the world

347  We selected 380 urban centers from the European Commission Global Human Settlement Urban Centre
348  Database and their included cartographic boundaries®®. To ensure global coverage, up to the five most
349  populous cities in each country were selected from the 1,000 most populous urban centers recorded in the
350 database. Population count, crowding, and meteorological variables were then estimated following

351  identical procedures used to calculate these variables in the Chinese prefectures. Weather measurements
352  were averaged over the 2-month period starting on February 1, 2020.

353

354  The parameters from the model of epidemic intensity predicted by humidity, crowding and population
355  size (see Table 1, Model 6) were used to estimate relative intensity in the 380 urban centers. Predicted
356  values of epidemic intensity that fell outside the original covariate space [0,1] (n=7) were set to 1. A full

357  list of predicted epidemic intensities can be found in the Supplementary Information.
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358

359 Sensitivity analyses

360 The inverse Shannon entropy metric may be sensitive to noise in incidence distribution. For example, the
361 noisier the incidence distribution the higher the epidemic intensity. To the extent that noise is elevated in
362  small populations (due to demographic stochasticity for instance) intensity also tends to be higher in

363  smaller populations, even if they have the same underlying shape to their epidemic curve. Lloyd’s mean
364  crowding also varies strongly with population size. Therefore, some of the observed relationship between
365 intensity and crowding may be due to (possibly independent) statistical scaling of both intensity and

366  crowding with population size. We therefore perform sensitivity analysis to test if cities that are more
367  crowded than expected for their size have lower epidemic intensities than expected for their size. We
368  calculate ‘excess intensity’ as the residuals on a regression of log(epidemic intensity) ~ log(pop); ‘excess
369  crowing’ as the residuals on a regression of log(crowding) ~ log(pop) and plot the relationship between
370  excess intensity and excess crowding’ (Extended Data Figure 1).

371

372 Simulating epidemic dynamics

373  We simulated a simple stochastic SIR model of infection spread on weighted networks created to

374  represent hierarchically-structured populations. Individuals were first assigned to households using the
375  distribution of household sizes in China (data from UN Population Division, mean 3.4 individuals).

376  Households were then assigned to “neighborhoods” of ~100 individuals, and all neighborhood members
377  were connected with a lower weight. A randomly-chosen 10% of individuals were given “external”

378  connections to individuals outside the neighborhood. The total population size was N=1000. Simulations
379  were run for 300 days and averages were taken over 20 iterations. The SIR model used a per-contact

380 transmission rate of f=0.15/day and recovery rate y=0.1/day. For the simulations without interventions,
381  the weights were wur = 1, war= 0.01, and wex= 0.001 for the “crowded” prefecture and wgx= 0.0001 for
382  the “sparse” prefecture. For the simulations with interventions, the household and neighborhood weights
383  were the same but we used wgy= 0.01 for the “crowded” prefecture and wgx= 0.001 for the “sparse”

384  prefecture. The intervention reduced the weight of all connections outside the household by 75%.

385

386
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